BioKIDS home

Kids' Inquiry of Diverse Species

Coccinella transversoguttata

What do they look like?

Coccinella transversoguttata is a medium-sized, round, oval beetle, measuring 5 to 7.8 mm in length. It has a red or orange body and black markings on its elytra, which cover the wings. This species has a long black stripe near the top of its elytra. The pronotum, the section between the head and the elytra, is black with white markings on either side. The head is black with two white spots. Antennae are quite short.

Eggs are small (about 1.0 mm) and generally yellow.

The larvae of Coccinella transversoguttata are black and long, with many body segments. There are several orange spots along the middle of its back. There are small spikes called scoli along the length of the body. (Gordon and Vandenberg, 1995; Gordon, 1985; Hagan, 1962; Hesler, et al., 2009; Obrycki and Tauber, 1981)

  • Sexual Dimorphism
  • sexes alike
  • Range length
    5 to 7.8 mm
    0.20 to 0.31 in

Where do they live?

Coccinella transversoguttata is native to North America, with populations in western Canada, western United States, and into Mexico. They can now also be found in Europe, Asia (except China), and Central America. In the past, Coccinella transversoguttata covered much of the eastern United States and Canada, but non-native lady beetle species that have moved into North America have caused populations of C. transversoguttata to decrease significantly. (Alyokhin, et al., 2008; Day and Tatman, 2006; Hesler, et al., 2009; Obrycki and Tauber, 1981; Turnock, et al., 2003)

What kind of habitat do they need?

Coccinella transversoguttata lives in open areas, such as old fields, agricultural fields, meadows, and marshes, where it feeds on pest insects. It is often found on woody plants, crops, and other flowering plants. (Colunga-Garcia, et al., 1997)

How do they grow?

Coccinella transversoguttata goes through complete metamorphosis, with life stages of egg, larva, pupa, and adult. Eggs are laid in early spring, when average temperatures reach 12°C. C. transversoguttata develops through four larval instars, pupates, and then emerges as an adult. Adults go into hiding for winter and then come out in early spring to mate and lay eggs. Development and growth of C. transversoguttata is effected by the amount of prey available, as well as temperature. (Obrycki and Tauber, 1981; Storch, 1976; Yasuda, et al., 2004)

How do they reproduce?

Coccinella transversoguttata often produces pheromones to attract mates and at close distances may use sight. This species is polygyandrous; both males and females will mate with many other individuals. After mating, males do not do anything to stop other males from mating with that female. (Gordon and Vandenberg, 1995; Kajita and Evans, 2009; Kajita, 2008; Kajita, et al., 2009; Obrycki and Tauber, 1981)

The reproductive behaviors of Coccinella transversoguttata are very similar to other lady beetle (Coccinellidae) species. Eggs are laid in groups of 20 to 30 eggs. C. transversoguttata will usually lay several of these groups, sometimes laying more than 1000 eggs. It will often lay the eggs near aphid populations so that the larvae have food to eat once they hatch. This species mates throughout the spring and summer. There are typically two generations of C. transversoguttata per year. (Evans, 2003; Gordon and Vandenberg, 1995; Kajita, 2008; Kajita, et al., 2009; Michaud, 2000; Obrycki and Tauber, 1981; Yasuda, et al., 2004)

  • How often does reproduction occur?
    Coccinella transversoguttata can breed continuously throughout the spring and summer months.
  • Breeding season
    After temperatures exceed 12°C, this species can mate indeterminately until temperatures cool again in autumn.
  • Range eggs per season
    20 to 1000+

Most lady beetles do not provide parental care for their offspring after the eggs are laid. The eggs do contain nutrients for the growth and development of the offspring, and C. transversoguttata will lay its eggs near aphid populations, so that the larvae will have food once they hatch. (Banks, 1957; Gordon, 1985; Hagan, 1962; Hodek, 1996)

  • Parental Investment
  • pre-hatching/birth
    • provisioning
      • female

How long do they live?

There is no information available about how long Coccinella transversoguttata lives, but like most lady beetles, individuals will probably only live one season. Beetles that are still alive when winter starts will go into hiding and come out again when spring arrives. (Gordon, 1985)

  • Typical lifespan
    Status: wild
    30 to 90 days

How do they behave?

Coccinella transversoguttata lives by itself, only meeting with other beetles to mate. It is an active predator that moves around mostly during the day. This species will fly from plant to plant to find prey. Over the winter, it goes into hiding (overwintering). The time at which it goes into hiding is determined by the amount of light in the environment. Since days get shorter during fall and winter, these beetles will overwinter once daylight hours drop below 10 to 13 hours per day. (Biddinger, et al., 2009; Dixon, 2005; Gordon, 1985; Sloggett and Majerus, 2000; Storch, 1976)

Home Range

Coccinella transversoguttata does not do anything to protect its territory. It moves through its habitat freely. There is little information about the size of its range. (Dixon, 2005; Gordon, 1985; Sloggett and Majerus, 2000)

How do they communicate with each other?

Coccinella transversoguttata finds mates by detecting pheromones released by other lady beetles. Sight is also used to find mates and other individuals. C. transversoguttata finds prey by sight, smell, and detecting chemicals. Adults use their antennae to feel objects, prey, and other insects. Larvae also use touch to find prey, by using their legs and mouths. (Gordon, 1985; Storch, 1976)

What do they eat?

Coccinella transversoguttata feeds almost completely on aphids and will occasionally eat scale insects. (Adriano, et al., 2009; Campbell and Cone, 1999; Davidson and Evans, 2010; Dixon, 2005; Obrycki, et al., 2009; Sloggett and Majerus, 2000)

  • Animal Foods
  • insects

What eats them and how do they avoid being eaten?

Other lady beetle species, particularly invasive species such as Harmonia axyridis and Coccinella septempunctata, are often predators of the eggs and larvae of C. transversoguttata. To defend itself, C. transversoguttata can release toxic chemicals from the joints in its legs. The red or orange color of its elytra is a warning signal to predators. Predators often know that brightly colored insects are poisonous, so they are less likely to attack them. (Gordon, 1985; Riddick, et al., 2009; Yasuda, et al., 2004; de Jong, et al., 1991)

  • These animal colors help protect them
  • aposematic

What roles do they have in the ecosystem?

Coccinella transversoguttata is a predator in its native range, feeding on aphids that eat plants. It can control the size of an aphid population. This role is decreasing as non-native lady beetle species such as Harmonia axyridis and Coccinella septempunctata move into the range of C. transversoguttata and use its resources. Harmonia axyridis and Coccinella septempunctata also prey on all life stages of C. transversoguttata. Several parasites also use C. transversoguttata as a host. Ectoparasitic fungi and ectoparasitic mites have been found on lady beetles all over the world. Mites of the genus Coccipolipus have also been found on this species. Male-killing bacteria including Rickettsia, Spiroplasma, Wolbachia, Flavobacteria, and γ-proteobacterium have been found on lady beetles species. The braconid wasp Dinocampus coccinellae is a major parasitoid on C. transversoguttata, causing the death of beetles that it infects. The Tachinidae fly Strongygaster triangulifer may also be a parasitoid of this species. (Gordon, 1985; Hagan, 1962; Riddick, et al., 2009; Sloggett and Majerus, 2000)

Commensal or parasitic species (or larger taxonomic groups) that use this species as a host

Do they cause problems?

There are no known negative effects of Coccinella transversoguttata on humans.

How do they interact with us?

Coccinella transversoguttata is a predator of insects that can destroy crops (aphids and scale insects). Because they eat so many of these pest species, C. transversoguttata can control the population, which benefits the agricultural industry by preventing damage to crops. (Dixon, 2005; Obrycki and Kring, 1998; Obrycki, et al., 2009; Sloggett, 2008)

  • Ways that people benefit from these animals:
  • controls pest population

Are they endangered?

Coccinella transversoguttata is not an endangered species. However, because many Asian beetle species are taking over the habitat of C. transversoguttata, its population has gotten significantly smaller. Conservation to prevent extinction will likely be needed. (Gordon, 1985; Hesler, et al., 2009; Turnock, et al., 2003; Yasuda, et al., 2004)


Dylan Graves (author), University of Michigan Biological Station, Angela Miner (editor), Animal Diversity Web Staff, Brian Scholtens (editor), University of Michigan Biological Station.


Adriano, G., N. Vandenberg, J. McHugh, J. Forrester, S. Slipinski, K. Miller, L. Shapiro, M. Whiting. 2009. The evolution of food preferences in Coccinellidae. Biological Control, 51(2): 215-231.

Alyokhin, A., K. Landry, C. Finlayson. 2008. Abundance of native and non-native lady beetles (Coleoptera: Coccinellidae) in different habitats in Maine. Annals of the Entomological Society of America, 101(6): 1078-1087.

Alyokhin, A., G. Sewell. 2004. Changes in a lady beetle community following the establishment of three alien species. Biological Invasion, 6: 463-471.

Arnett, R. 1993. American insects: a handbook of the insects of America north of Mexico. Boca Raton, FL, USA: CRC Press.

Banks, C. 1957. The behaviour of individual coccinellid larvae on plants. The British Journal of Animal Behaviour, 5(1): 12-24.

Biddinger, D., D. Weber, L. Hull. 2009. Coccinellidae as predators of mites: Stethorini in biological control. Biological Control, 51: 268-283.

Borror, D., R. White. 1970. Peterson field guides: A field guide to the insects of America north of Mexico. Boston, MA, USA.: Houghton Mifflin.

Campbell, C., W. Cone. 1999. Consumption of damson-hop aphids (Phorodon humuli) by larvae of Coccinella transversoguttata and Hippodamia convergens (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 9(1): 75-78.

Colunga-Garcia, M., S. Gage, D. Landis. 1997. Response of an assemblage of Coccinellidae (Coleoptera) to a diverse agricultural landscape. Entomological Society of America, 26(4): 797-804.

Davidson, L., E. Evans. 2010. Frass analysis of diets of aphidophagous lady beetles (Coleoptera: Coccinellidae) in Utah alfalfa fields. Environmental Entomology, 39(2): 576-582.

Day, W., K. Tatman. 2006. Changes in abundance of native and adventive Coccinellidae (Coleoptera) in alfalfa fields, in northern New Jersey (1993-2004) and Delaware (1999-2004), USA. Entomological News, 117(5): 491-502.

Dixon, A. 2005. Insect predatory-prey dynamics: ladybird beetles and biological control. Cambridge, UK: Cambridge University Press.

Elliott, N., R. Kieckhefer, W. Kauffman. 1996. Effects of an invading coccinellid on native coccinellids in an agricultural landscape. Oecologia, 105(4): 537-544.

Evans, E. 2003. Searching and reproductive behavior of female aphidophagous ladybirds (Coleoptera: Coccinellidae): a review. European Journal of Entomology, 100(1): 1-10.

Fauske, G., P. Tinerella, D. Rider. 2003. A list of the ladybeetles (Coleoptera: Coccinellidae) of North Dakota with new records from North Dakota and Minnesota. Journal of the Kansas Entomological Society, 76: 38-46.

Gordon, R. 1985. The Coccinellidae of America north of Mexico. Journal of the New York Entomological Society, 93: 1-912.

Gordon, R., N. Vandenberg. 1995. Larval systematics of North American Coccinella L. (Coleoptera: Coccinellidae). Entomologica Scandinavica, 26: 67-86.

Hagan, K. 1962. Biology and ecology of predaceous Coccinellidae. Annual Review of Entomology, 7: 289-326.

Hesler, L., M. Catangui, J. Losey, J. Helbig, A. Mesman. 2009. Recent records of Adalia bipunctata (L.), Coccinella transversoguttata richardsoni Brown, and Coccinella novemnotata Herbst (Coleoptera: Coccinellidae) from South Dakota and Nebraska. Coleopterists Bulletin, 63(4): 475-484.

Hesler, L., R. Kieckhefer. 2008. An annotated and updated species list of the Coccinellidae (Coleoptera) of South Dakota. Coleopterists Bulletin, 62(3): 443-454.

Hodek, I. 1996. Ecology of Coccinellidae. New York, NY: Dordecht, Kluwever Academic.

Kajita, Y. 2008. Reproductive tactics of aphidophagous lady beetles: Comparison of a native species and an invasive species that is displacing it. Utah State University - All Graduate Theses and Dissertations, 137: 1-157.

Kajita, Y., E. Evans. 2009. Ovarian dynamics and oosorption in two species of predatory lady beetles (Coleoptera: Coccinellidae). Physiological Entomology, 34(2): 185-194.

Kajita, Y., E. Evans. 2010. Relationships of body size, fecundity, and invasion success among predatory lady beetles (Coleoptera: Coccinellidae) inhabiting alfalfa fields. Annals of the Entomological Society of America, 103(5): 750-756.

Kajita, Y., E. Evans, H. Yasuda. 2009. Reproductive responses of invasive and native predatory lady beetles (Coleoptera: Coccinellidae) to varying prey availability. Environmental Entomology, 38(4): 1283-1292.

Kindlmann, P., O. Ameixa, A. Dixon. 2011. Ecological effects of invasive alien species on native communities, with particular emphasis on the interactions between aphids and ladybirds. Biocontrol, 56(4): 469-476.

Lundgren, J., M. Seagraves. 2011. Physiological benefits of nectar feeding by a predatory beetle. Biological Journal of the Linnean Society, 104(3): 661-669.

Michaud, J. 2000. Development and reproduction of ladybeetles (Coleoptera: Coccinellidae) on the citrus aphids Aphis spiraecola Patch and Toxoptera citricida (Kirkaldy) (Homoptera: Aphididae). Biological Control, 18(3): 287-297.

Obrycki, J., J. Harwood, T. Kring, R. O'Neill. 2009. Aphidophagy by Coccinellidae: Application of biological control in agroecosystems. Biological Control, 51(2): 244-254.

Obrycki, J., T. Kring. 1998. Predaceous Coccinellidae in biological control. Annual Review of Entomology, 43: 295-301.

Obrycki, J., M. Tauber. 1981. Phenology of 3 Coccinellid species (Coleoptera: Coccinellidae) Adalia bipunctata, Coccinella transversoguttata, Coccinella septempuncatata – thermal requirements for development. Annals of the Entomological Society of America, 74(1): 31-36.

Riddick, E., T. Cottrell, K. Kidd. 2009. Natural enemies of the Coccinellidae: parasites, pathogens, and parasitoids. Biological Control, 51(2): 306-312.

Saito, T., S. Bjørnson. 2008. Effects of a microsporidium from the convergent lady beetle, Hippodamia convergens Guérin–Méneville (Coleoptera: Coccinellidae), on three non-target coccinellids. Journal of Invertebrate Pathology, 99(3): 294-301.

Sasaji, H. 1971. Coccinellidae. Tokyo: Academic Press of Japan.

Sloggett, J. 2008. Weighty matters: Body size, diet and specialization in aphidophagous ladybird beetles (Coleoptera: Coccinellidae). European Journal of Entomology, 105: 381-389.

Sloggett, J., M. Majerus. 2000. Habitat preferences and diet in the predatory Coccinellidae (Coleoptera): an evolutionary perspective. Biological Journal of the Linnean Society, 70(1): 63-88.

Storch, R. 1973. Effect of photoperiod on Coccinella transversoguttata (Coleoptera: Coccinellidae). Entomologia Experimentalis Et Applicata, 16(1): 77-82.

Storch, R. 1976. Prey detection by fourth stage Coccinella transversoguttata larvae (Coleoptera: Coccinellidae). Animal Behaviour, 24(3): 690-693.

Turnock, W., I. Wise, F. Matheson. 2003. Abundance of some native coccinellines (Coleoptera: Coccinellidae) before and after the appearance of Coccinella septempunctata. Canadian Entomologist, 135(3): 391-404.

Yasuda, H., E. Evan, Y. Kajita, K. Urakawa, T. Takizawa. 2004. Asymmetric larval interactions between introduced and indigenous ladybirds in North America. Oecologia, 141(4): 722-731.

de Jong, P., G. Holloway, P. Brakefield, H. de Vos. 1991. Chemical defence in ladybird beetles (Coccinellidae). II. Amount of reflex fluid, the alkaloid adaline and individual variation in defence in 2-spot ladybirds (Adalia bipunctata). Chemoecology, 2: 15-19.

University of Michigan Museum of ZoologyNational Science Foundation

BioKIDS home  |  Questions?  |  Animal Diversity Web  |  Cybertracker Tools

Graves, D. 2013. "Coccinella transversoguttata" (On-line), Animal Diversity Web. Accessed April 22, 2024 at

BioKIDS is sponsored in part by the Interagency Education Research Initiative. It is a partnership of the University of Michigan School of Education, University of Michigan Museum of Zoology, and the Detroit Public Schools. This material is based upon work supported by the National Science Foundation under Grant DRL-0628151.
Copyright © 2002-2024, The Regents of the University of Michigan. All rights reserved.

University of Michigan